inexogy Forschung Geräteerkennung

Für Bastler und Neugierige: Datensätze zur Geräteerkennung jetzt auf GitHub zur Verfügung

Interessierte können jetzt auf einen Forschungsdatensatz für unsere Geräteerkennung zurückgreifen – frei verfügbar auf GitHub inklusive ausführlicher Anleitung. So können Sie anhand echter Daten verstehen, was hinter der Geräteerkennung schlummert und eigene Experimente anstellen.
Variable tarife

Unsere NILM-Forschung (Non Intrusive Load Monitoring) – besser bekannt unter dem Begriff Geräteerkennung – ist und bleibt ein spannendes Feld. Wie können einzelne Geräte im Haushalt mithilfe eines Smart Meter an ihrem Verbrauch erkannt und dem Nutzer transparent aufbereitet werden, ohne weitere Zwischenstecker oder manuelle Ablesungen?

Die Technologie dahinter ist dabei weiter ein dynamisches Forschungsfeld und lebt vor allem von Tests und Ideen in der Breite. Bei der Arbeit mit großen Datenmengen und unterschiedlichsten Verbrauchern ist das Feedback aus möglichst vielen Richtungen unabdinglich. Auch aus diesem Grund möchten wir externen Entwicklern und technisch interessierten Anwendern die Möglichkeit geben, selbst einen Blick auf unsere gesammelten Erfahrungen zu sammeln. Sie bekommen dabei die Möglichkeit, anhand real generierter, voll-anonymisierter Datensätze selbst zu erkunden, welche Methodiken hinter NILM und der Geräteerkennung schlummern.

Modelle, Testdaten und und und …

Was genau haben wir dabei veröffentlicht? Zahlreiche unterschiedliche Klassifizierungsmodelle und Testdaten zu verschiedensten Verbrauchern wie Spül- oder Waschmaschinen, Heizelementen, Kühlaggregate usw. Darüber hinaus stellen wir außerdem Informationen in der Breite zur Geräteerkennung genauso zur Verfügung wie historische Erfahrungen, die wir im Testing gesammelt haben. Sollten Sie Bedarf an weitern Datensätzen haben, melden Sie sich mit Ihrem Anliegen gerne auch einfach direkt bei unserer Forschungsabteilung über die forschung@inexogy.com.

Die Zukunft der Geräteerkennung

Open Source Entwicklungen sind in unseren Augen eine sehr gute Möglichkeit, mit dem gewonnen Feedback und zurückgespielten Denkanstößen unsere eigenen Weiterentwicklungen zu beschleunigen. Gleichzeitig würde die verbesserte Qualität von NILM dafür sorgen, dass wir neue Innovationspotenziale der Geräteerkennung erkunden und für unsere Nutzer greifbar machen könnten – bspw. gerätespezifische Empfehlungen zur Optimierung des Verbrauchs.

Damit möglichst wenig Fragen zum Start übrig bleiben, haben wir hier noch einmal die wichtigsten Punkte zum Gebrauch der GitHub Daten für Sie in einem FAQ zusammengefasst.

Was genau finde ich auf GitHub?

Verschiedene Test- und Klassifizierungsmodelle zum Thema NILM. Diese umfassen außerdem Anwendungsskripte sowie die Train-Historie. Zu dem GitHub Profil mit allen notwendigen Informationen gelangen Sie hier

Was kann ich als GitHub Nutzer mit den Daten genau machen, um NILM voranzubringen?

Mit den vorhanden Datensätzen lassen sich Fixes entdecken und Vorschläge einreichen, die zur Verbesserung des Systems beitragen können. Weiter können Sie als Nutzer auch neue, eigene Modelle / Klassifikatoren nach Einleitung hinzufügen und somit helfen, Systeme zu komplementieren.

Kann ich auch meine eigenen Daten analysieren?

Ja, Sie können nach Einleitung Ihrer eigenen Daten, diese in entsprechende Dateiformate umformulieren und das System laufen lassen, um Ergebnisse anhand Ihrer eigenen Daten zu berechnen.

Welche Kenntnisse werde ich brauchen?

Um sich direkt vom Start an gut zurechtzufinden, empfehlen wir grundlegende Python-Kenntnisse sowie Basisfähigkeiten im Bereich des Machine Learnings (besonders mit den Bibliotheken TensorFlow, Numpy und Pandas). Die Datensätze bieten einen sehr guten Einstiegspunkt, um das Thema NILM grundlegend kennenzulernen.

Autor: Pablo Santiago

inexogy Newsletter

In unserem Newsletter warten aktuelle Hintergrundberichte und spannende Geschichten 
aus der inexogy Welt auf Sie.

Aktuellste Beiträge

Ein Immobilienportfolio in Aachen, bestehend aus Häusern aus den 60er und 70er Jahren, soll energetisch saniert werden. Die Entscheidung fiel auf die Realisierung von Mieterstrom mit Discovergy. Unternehmer Claus Schiffler und Miteigentümer vom Schneidemaschinenspezialisten Fecken-Kirfel erklärt, warum Mieterstrom eine hervorragende Option für die Sanierung im Bestand ist, und wie davon Mieter und Vermieter gleichermaßen profitieren.
Gerade mit Blick auf den Neustart des Smart Meter Rollouts und die Einführung zeitvariabler Stromtarife auf Basis von Smart Metern wird häufig die Frage gestellt: Wieso auf Discovergy setzen? Und was ist der Sinn und Zweck eines bundesweiten wettbewerblichen Messstellenbetriebs? Wir sind dieser Frage nachgegangen und haben aus Sicht unserer Partner (Energieversorger, Solarteure, Immobilienunternehmen oder Filialisten) die wichtigsten operativen und strategischen Vorteile der Zusammenarbeit mit Discovergy herausgearbeitet.
In gemeinsamem Projekt zwischen Discovergy und dem Anbieter von dynamischen Stromtarifen Voltego wurden die ersten intelligenten Messsysteme installiert. Die Installationen sollen im ersten Quartal 2024 Fahrt aufnehmen. Gregor Hinz, CEO und Gründer des auf Flexibilität spezialisierten Stromversorgers und Direktvermarkters, erläutert in einem Interview, warum sein Unternehmen von Anfang an auf dynamische Tarife gesetzt hat und welche Vorteile die Kooperation zwischen Discovergy und Voltego den Kunden bringt.